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Abstract

Dispersion in rotating and stratified turbulence is investigated by an analytical linear model, kinematic simulations and direct numer-
ical simulations in order to observe the impact of nonlinearity on single-particle and two-particle statistics. The anisotropy of these
Lagrangian quantities is discussed in relation with the Eulerian field anisotropy and its structures, pancake- or cigar-shaped depending
on the dominant body force. We show that a linear approach is valid for single-particle dispersion, and that the nonlinear structuring of

the Eulerian field influences particle dispersion at long times.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Lagrangian models of rotating and stratified turbulence
are needed to model mixing and transport in geophysical
flows. Environmental applications, such as the simulation
of dispersion of pollutants from a planned industrial facil-
ity or the transport of nutrients in the ocean are actual
problems which need an accurate Lagrangian model of
rotating and stratified turbulence. Furthermore, mixing of
chemicals in environmental flows, such as ozone in the
atmosphere or carbon dioxide in the ocean can have strong
climatic effects due to different rates of the associated
chemical reactions. Simulations of these processes necessi-
tate a good understanding of the Lagrangian processes in
rotating stratified turbulence.

Experimental Lagrangian data or measurements in nat-
ure are rare (Richardson, 1926) as following fluid particles
in a turbulent flow is difficult. How can we simplify geo-
physical flows to capture main physical mechanisms with-
out the influence of secondary effects? We choose to
analyse homogeneous, strongly stratified and rapidly rotat-
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ing turbulence. It is definitely too far removed from appli-
cations to be quantitatively compared with them. However,
as the role of turbulence with its nonlinear interactions in
geophysical systems is barely known, we believe that this
simplified system can add valuable qualitative insights into
the nonlinear mechanisms of geophysical turbulence. This
physical understanding of the nonlinear mechanisms will
be of vital importance, if one wants to start to model more
complex geophysical applications.

One method of gaining information on turbulent diffu-
sion is to find and apply laws connecting the Eulerian
and Lagrangian velocity fields and calculate Lagrangian
statistics with Eulerian velocity fields. Stable stratification
and rotation is taken into account in the Boussinesq system
of equations

o+ u-Vu—vWu=—Vp—2Qnx u-+bn, (1)
Ob+u-Vb—yV?’h=—Nn-u, (2)
V-u=0 (3)

with N the Brunt—Vaisala (buoyancy) frequency and Q the
rotational frequency. Both parameters act on the velocity
field linearly and compete against the nonlinear advection
term. Furthermore, for cases with rotation and stratifica-
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tion, the ratio of « = 2Q/N is a crucial non-dimensional
number characterizing the flow.

“Turbulence” and “wave” like dynamics are defined by
splitting the velocity field in the eigenmodes of the linear-
ized system (1)—(3), so that the total turbulent energy of a
rotating and stratified flow can be divided into a vortex
mode and a wave mode. The vortex mode is a fraction of
the horizontal velocity field, storing kinetic energy. Its lin-
ear evolution is time independent. The wave mode consists
partly of the non-vortex velocity field, also storing kinetic
energy, and the buoyancy field, storing potential energy.
The linear evolution of the wave mode is governed by

the dispersion relation ¢ = /N?sin> 0 + 4Q% cos? 0 which

depends on 0, the polar angle with the vertical. It creates
a singular case for the value « = 1, as a limit between the
rotation dominant from the stratification dominant cases.
Linear processes in the flow field differ over the cases,
due to linear wave dynamics with variable dispersion laws.

Lagrangian statistics are basically generated by follow-
ing particles, in our case equivalent to fluid elements, in a
velocity field and by calculating statistics of the position
as a function of time. Statistics means the average over val-
ues of all trajectories and/or ensembles with notation ( ).

The Lagrangian frame of reference is moving with a
fluid element, so fundamentally different from the Eulerian
one. The initial particle position is important, as it is the
decisive quantity deciding the evolution of the trajectory.

The Lagrangian position of a fluid element labeled by the
initial position X, x(¢) = x(X, ), has a Lagrangian velocity
V(t) related to the Eulerian velocity field u(x,?) by
V(t) = u(x(X, t),t). Therefore the position of the particle
advected by the Lagrangian velocity field can be written as

x(t) =V (X,t) =u(x(X,1),1), 4)

which subjects the Lagrangian position of the particle x(z)
to feedback by itself and consequently to a nonlinear
evolution.

We study two Lagrangian quantities, the first of which is
single-particle dispersion, i.e. the time evolution of the dis-
tance particles have from their initial position X. Second,
we also calculate relative dispersion defined as two-particle
dispersion, i.e. the time evolution of the distance between
two initially neighbouring particles.

1.1. The role of nonlinear processes in Lagrangian
statistics

The trajectory equation (4) is nonlinear. Is this enough
to model advective properties of a time-dependent flow
field? Is a linear flow field enough to model Lagrangian sta-
tistics without using trajectories and therefore Eq. (4)? The
role of nonlinearity in the dynamics of the flow field on
Lagrangian statistics is a key point in answering this ques-
tion. In Fig. 1 we show trajectories integrated in a velocity
field obtained with a nonlinear method (top) and a linear

Fig. 1. Examples of trajectories in anisotropic turbulence integrated in different velocity fields: (a) nonlinear stratified, (b) nonlinear rotating, (c) linear

stratified and (d) linear rotating.
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model (bottom). Qualitatively, the trajectories look differ-
ent. However, a quantitative analysis of the statistics of
these trajectories lead to different conclusions.

Taylor (1921) discovers a relationship between Lagrang-
ian velocity correlations and one-particle dispersion, but,
with an argument of Corrsin (1963), a model of one-parti-
cle dispersion can be developed in the framework of Rapid
Distortion theory (RDT) (Cambon and Scott, 1999), from
Eulerian two-time velocity correlations (Cambon et al.,
2004). This linear model manages to quantitatively predict
velocity correlations and single-particle dispersions for
rotating and stratified turbulence for moderate times. At
long times, when diffusion processes dominate, the model
is expected to be inaccurate. Nevertheless, the importance
of nonlinear processes in Lagrangian statistics where only
one trajectory is involved seems limited. This might change
for two-particle dispersion. Preliminarily, we found the role
of nonlinearity in stratified and rotating Lagrangian statis-
tics relatively unimportant, especially when one compares
this role to the one in Eulerian statistics.

So how can one distinguish linear from nonlinear phe-
nomena in a simple way? We use results for Lagrangian
quantities obtained with three fundamentally different
approaches. The first method uses two-time velocity corre-
lation functions analytically deduced with RDT. They are
put into relation with Lagrangian statistics using the sim-
plified Corrsin hypothesis. This method is therefore strictly
linear, using no integration of Lagrangian trajectories and
is referred to as “RDT/SCH”.

Trajectories integrated with the help of kinematic simu-
lations (KS) are used to simulate the properties of Lagrang-
1an statistics. KS uses an ensemble of frozen vector fields,
composed of random spatial Fourier modes, as velocity
fields. The trajectories are therefore followed on these spa-
tially random velocity fields which incorporate the exact
linear wave dynamics. Thus, the intrinsic nonlinearity of
the trajectory equation (4) has an effect on Lagrangian
statistics.

The third method consists in tracking particles within
velocity fields generated by fully nonlinear direct numerical
simulations (DNS). So all dynamical nonlinearities as well
as any nonlinearities from the trajectory equation (4) are
taken into account.

1.1.1. Linear Lagrangian model: RDTISCH

The possibility of evaluating velocity correlations at
arbitrary times from RDT in connection with Taylor’s rela-
tion (Taylor, 1921), suggests a model to predict single-par-
ticle dispersion (Cambon et al., 2004) relating Eulerian and
Lagrangian velocity correlations by a simplified Corrsin
hypothesis (SCH) (Kaneda and Ishida, 2000; Corrsin,
1963).

Provided the initial velocity field is known, the exact lin-
ear solution from RDT not only yields the time evolution
of the velocity field & but also analytical expressions for
higher-order single-point statistics, upon integration of
two-point correlations of # in spectral space. This yields

kinetic energy spectra, potential energy, and two-point
two-time spectra of the horizontal or vertical velocity com-
ponents. Strictly speaking, this method only applies to
Eulerian correlation spectra but, following Corrsin’s argu-
ment, these can replace Lagrangian ones when computing
single-particle dispersion with the time integration method
of Taylor (Eq. (6)). This gives an analytical expression for
calculating one-particle Lagrangian displacement correla-
tions using two-time velocity correlations (Kaneda and Ish-
ida, 2000; Cambon et al., 2004). Details of the method are
explained in Cambon et al. (2004), which also describes the
general results for the stratified/rotating case with arbitrary
initial partition of potential and kinetic energies. In these
results, we observe that the mere variation of dispression
relation due to different cases produces different dispersion
behaviours of the linear model.

1.1.2. Kinematic simulation

Kinematic simulation models a turbulent velocity field as
a superposition of random Fourier modes so that the field is
automatically incompressible. No dynamical equation is
involved, although oscillations physically related to internal
waves are explicitly introduced for each mode by using the
linear solution from RDT (Nicolleau and Vassilicos, 2000).

Both the choice of random wave vectors distribution
and the initialization of KS need to be done with extreme
care to render it as physically realistic as possible, as no
dynamic processes alter the initial field later on. Once this
is properly taken care of, Lagrangian statistics calculated
with KS capture the main Lagrangian properties of aniso-
tropic turbulence.

In KS, the time-dependent velocity field @ (k) is
expressed in the Craya-Herring frame of reference (spec-
tral unit vectors ¢'" and ¢'® which ensure incompressibility,
see Liechtenstein et al., 2005), as a discrete Fourier sum

(m,n)=(My.N) )
ui(x,1) = Z (ﬁfnlﬁ (t)er(r}n):f + ifffﬁ (t)er(r%rggi) Gl (5)
(n,m)=(1,1)

where the subscript mn implies a dependence on the discret-
ized wave vector k,,, which alone represents a given wave
number at a given polar angle 6,,. The total number of
resolved modes is N My = 10,000 with N, =25 and
My = 400.

The time evolution of &) (k,,,, ) is given by the discrete
RDT linear solution, which propagates the chosen initial
conditions obtained by computing the Green’s function
of the linearized system (1)—(3).

KS is then used as a Lagrangian model of turbulent dif-
fusion by numerically solving the fluid trajectory equation
(4), where the velocity u(x) is given by (5).

The spectral energy distribution is fixed throughout the
time by an analytically prescribed standard spectrum (ock®
for kumin < k < k; and (ock ™2 for k; < k < kyax). The differ-
ent runs of KS with their denomination and a few param-
eters including a Reynolds number defined as Rej, = kpay/
k; are shown in Table 1.
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Table 1
Some parameters of KS

N 2Q o Rey q ki
KSO0 30m 0 0 100 1 1
KSO0.1 30m 3n 0.1 100 1 1
KSI1 30m 30m 1 100 1 1
KS10 3n 30n 10 100 1 1
KSinf 0 30m 00 100 1 1
Table 2
Some parameters of DNS

N 2Q o Re; q L

DNSO 10m 0 0 130 0.6 0.3
DNSO0.1 10m n 0.1 130 0.6 0.3
DNSI 10m 10m 1 100 0.6 0.25
DNSI10 b 10m 10 170 0.6 0.3
DNS-inf 0 10m 00 170 0.6 0.3
DNS-iso 0 0 - 90 0.4 0.25

1.1.3. Direct numerical simulation

Direct numerical simulation is used to solve the Bous-
sinesq Equations (1)—(3) with a standard fully de-aliased
pseudo-spectral collocation method permitted by homoge-
neity (Rogallo, 1981). Trajectories are followed through
the flow field in order to generate Lagrangian statistics.
Although the initialization is less important in DNS than
KS, as triadic exchanges slowly de-correlate the velocity
field from the initial fields, transient effects due to an aniso-
tropic initialization sometimes disappear only after several
turbulent turnover times. We initialize using isotropic ini-
tial conditions and a narrow band initial energy spectrum,
and a resolution of 512° points is used. No forcing is imple-
mented, meaning that the turbulence in the DNS is freely
decaying. To let higher-order velocity correlations grow,
we perform an isotropic pre-calculation, and thereby allow
for discontinuities in statistical data derivatives at the time
of introduction of an anisotropic body force into the
system.

In the second method, trajectories in DNS are obtained
by solving the fluid trajectory equation (4) as for KS. Some
initial parameters from the runs of the DNS are shown in
Table 2, including the Reynolds number based on the Tay-
lor microscale Re;.

2. Single-particle dispersion

A basic Lagrangian quantity is the single-particle disper-
sion. By integration along the trajectory of a fluid element,
one gets mean displacements along each ith direction
Axi(t,) = x,(t) — x,(¢') = [, %(s)ds, which as covariances,
give single-particle dispersion in all three space directions,
i=1,2,3 (Taylor, 1921)

Ault, 1) = (Axi(t,7))* = / d / i (s)in(s)) ds. (6)

7200 particle pairs are interpolated in each run of the KS,
while 2500 particle pairs are traced in each run of the DNS.
For the analytical linear method, the Lagrangian velocity
correlations in (6) are replaced by their Eulerian counter-
parts derived from RDT (Cambon et al., 2004), following
the simplified Corrsin hypothesis.

For studying anisotropy, we compare single-particle dis-
persion in the horizontal and the vertical directions
separately.

[ (a)

RDT/SCH

[ (b -
® 6

0.01

Fig. 2. (a) Linear prediction, (b) KS, and (c) DNS of vertical single-
particle dispersion for different & = 2Q/N. The dominantly rotating curves
are scaled with 2Q instead of N for the time as well as the dispersion scale.
The horizontal lines show the value 3 of the plateau.
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2.1. Vertical single-particle dispersion

Vertical single-particle dispersion As33(0,7) is shown in
Fig. 2 calculated with RDT/SCH, KS and DNS. The sim-
ilarity of the three figures is remarkable, considering the
differences in the methods with which the results have been
obtained. Especially the statistics obtained from KS and
DNS are remarkably similar.

Four phenomena may be identified:

e A ballistic regime (As; o £?) can be observed at small
times, for all the values of o and all models.

o An oscillating plateau for cases with non-zero stratifica-
tion, even if rotation is dominant, is seen at intermediate
or long times.

e For rotating cases, linear A3 o< ¢ laws can be observed
at intermediate times.

e Finally, at longer times a Brownian regime can be
observed for some cases, such that Asz; o 1.

The ballistic regime is expected in all Lagrangian disper-
sions, illustrating simply the absence of interactions
between the fluid particle and the flow for small enough
times. It defines the smallest Lagrangian time scale, mea-
suring the time at which the flow starts to interact with
the fluid particle. For the vertical particle dispersion in
rotating and stratified turbulence, this time can be univer-
sally normalized by using 7 as the time scale. The ballistic
regime is observed up to around 7'=0.5, similar in all
cases, as it is a linear phenomenon. The absolute values
of the one-particle dispersion can be normalized by the
dominating parameter N or 2, and by the initial vertical
turbulent kinetic energy (u?)/2 (Nicolleau and Vassilicos,
2000). For an isotropic Reynolds stress tensor, such as in
RDT/SCH, this comes down to using the total turbulent
kinetic energy ¢*/2 = (u; 4+ u} +uZ)/2, but in DNS, due
to its anisotropic velocity field, the differences can be large.
In KS, the anisotropy in the turbulent kinetic energy has no
effect and ¢*/2 is used as normalization.

The plateaus illustrate a confinement of vertical dis-
placements for fluid particles, which scale with any non-
zero value of N. This plateau is definitive in RDT/SCH,
while it disappears for KS and DNS at long times. The
scaling of the plateau universally fixes the evolution for
the vertical one-particle dispersion (Nicolleau and Vassili-
cos, 2000), and, apart from the purely rotating regime with
o = oo, the scaling seems to be always valid, even for dom-
inant rotating cases. The horizontal lines in Fig. 2 are plot-
ted for an absolute value of 3, indicating that the vertical
dispersion scales with (u2)/2 rather than with ¢*/2. The
nonlinear phenomena in Lagrangian statistics develop on
a long-time scale, so the absolute confinement of particles
in the vertical one-particle dispersion is a linear effect.
The absolute confinement is a consequence of the potential
energy which can be transformed to kinetic energy, limited
for each fluid particle. However, if the available potential
energy varies, the confinement can be replaced by a diffu-

sive motion which would exhibit a Brownian 7-law. Such
an effect needs diffusive mechanisms for the scalar, in our
case density fluctuations. Although the available potential
energy is fixed for an instant in time, it can “regain’ lost
potential energy by nonlinear transfers from neighbouring
fluid particles.

The Brownian regime is a typical phenomenon observed
in one-particle dispersion in isotropic turbulence. At some
distance Ax from the particle’s initial position, the
Lagrangian velocities at the initial and current positions
are uncorrelated so that the increase in Ax follows a ran-
dom-walk. Ax is therefore Brownian and follows a
(Ax)*> T law observed in Fig. 2(c) for the run DNS-iso
at T~ 10. The time associated with this transition is asso-
ciated with the largest Lagrangian phenomena, generally
called T; and is comparable to the integral time in Eulerian
statistics. If velocities are vertically correlated, i.e. for cases
with dominant rotation, we do not expect the same mech-
anism to apply for a linear 7-law. Although cases with
rotation calculated by RDT/SCH exhibit a linear T-law
and cases from KS and DNS show a short tendency toward
a T-law at a time T ~ 1, this tendency is replaced in DNS
and KS by a time law 77, with y & 2, for & = co. The linear
evolution of rotating vertical single-particle dispersion may
therefore not be due to an effect similar to Brownian diffu-
sion as a random-walk evolution is expected to appear only
at later times.

We observe further differences between the three cases.
The oscillations in the linear method are regular and slowly
damped, due to linear phase mixing only, which is not pres-
ent at o = I(undamped oscillations). As a consequence, in
DNS, the ascent of the one-particle dispersion seen for
the case « =1 is a nonlinear effect. As the dynamics is
strictly linear in KS, we attribute the similar evolution of
the one-particle dispersion to the nonlinearity in the fluid
trajectory equation (4). This “nonlinear” tendency of a
reduced confinement is confirmed by KS and DNS runs
at higher Froude numbers (not shown here).

2.2. Horizontal one-particle dispersion

Horizontal one-particle dispersion A(0,¢) is shown in
Fig. 3. Again, the similarity is good, though Fig. 3(a) and
(c) from the linear method and DNS compare better than
the KS results. As for As3, in all three cases the horizontal
one-particle dispersion shows a > law at small times. With
rotation one finds a linear 7-law at about 0.1 integral time
scales, which, depending on the amount of stratification,
returns to a ¢ time evolution.

The main difference between the three figures is the ver-
tical axis scaling, done here with the initial horizontal veloc-
ity correlation length scale Lj, = [(u,(x’)){u.(x))dx, where
x and x’ differ by a strictly horizontal distance (Liechten-
stein et al., 2005) and initial mean horizontal velocity
uy = (u; +u?)/2. The point of transition to anisotropic
behaviour appears earlier in KS and latest in RDT/SCH.
Furthermore, the transient linear #-law of DNSI10 and
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Fig. 3. (a) Linear prediction, (b) KS, and (c) DNS of horizontal one-
particle dispersion for different o = 2Q/N.

DNS-inf is not as long as the corresponding cases in RDT/
SCH or KS. This might be a low Reynolds number effect as
well as a difference between linear/nonlinear evolution.
Single-particle dispersion in isotropic turbulence exhib-
its a Brownian behaviour for very long times. This regime
starts to appear in isotropic DNS shown in Fig. 3(c). All
other runs do not show such a behaviour. In anisotropic
turbulence the Brownian regime might still exist, but
appearing only at longer times. The possible absence of a
linear t-law for horizontal one-particle dispersion in aniso-

tropic cases can be attributed to a non-zero velocity corre-
lation length due to large structures. The long-time
dynamic evolution of these as well as its relation to the
Brownian regime is still unknown. KS has been reported
to produce a Brownian regime for long times (Nicolleau
and Vassilicos, 2000), though it cannot give a conclusive
answer for a dynamically evolving flow field.

For pure rotation, the Brownian regime seems not to go
back to a ballistic regime in RDT/SCH. Furthermore, the
vertical diffusivity in this model is exactly twice the hori-
zontal one (Cambon et al., 2004), a ratio which is only mar-
ginally recovered for the nonlinear data at intermediate
times.

3. Two-particle dispersion

Two-particle dispersion is introduced by Richardson
(1926) as the evolution of the distance from a fluid particle
to an initially neighbouring one. It can be directly related
to scalar diffusivity and so is the basic quantity in turbulent
mixing.

For two particles x and x’ the absolute two-particle dis-
persion is their separation squared (x(7) — x(7))> It is cal-
culated as a function of time and depends on the initial
separation & = x(0) — x’(0). The relative two-particle dis-
persion A is defined as A;(¢) = (x;(¢) —xj.(t)>2 —d7. No
relation as easy as Taylor’s relation for single-particle dis-
persion can be found, as two trajectories and the history
of velocity correlations of the two trajectories are involved.
Therefore, analytical models for two-particle dispersions
are rare. We therefore only use KS and DNS for the calcu-
lation of A, no analytical or RDT/SCH model is presented.

We analyse exclusively the relative two-particle disper-
sion, as the initial evolution of the separation is so small
that it cannot be observed in the absolute two-particle dis-
persion. The initial separation of the runs from KS and
DNS is comparable and amounts to about half a Kol-
mogorov length scale 5. As for single-particle dispersion,
two-particle dispersion in anisotropic turbulence depends
strongly on the direction, so we calculate A; separately
for the vertical and horizontal directions.

3.1. Vertical two-particle dispersion

Vertical two-particle dispersion is shown in Fig. 4, calcu-
lated with KS and DNS. A basic similarity between the two
curves exists in an initial ballistic separation, an intermedi-
ate transition and a final fast separation ocz” for dominantly
stratified cases to a very fast separation ocz> for dominantly
rotating cases. However, the similarity between KS and
DNS is not as complete as for the single-particle dispersion,
illustrated by the difference in scales for Fig. 4(a) and (b).
This is in contrast with Fig. 2.

The vertical scalings in the graphs is similar to the
one used for single-particle separation multiplied by &> in
units of the Kolmogorov length scale #. With this scaling,
all curves of KS collapse in the ballistic regime with a
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Fig. 4. (a) KS and (b) DNS of vertical two-particle dispersion for different
o = 2Q/N. The dominantly rotating curves are scaled with 2Q instead of N
for the time as well as the dispersion scale.

transition occurring at around 7=0.5 and normalized
A3, = 0.02. The collapse of the ballistic regime in DNS is
less good. However, the transition occurs at approximately
the same 7'=0.5 and normalized A3, = 0.02 as in KS.
After the transition, DNS exhibits oscillations at the
Brunt—Vaisala frequency for DNSI, a very short plateau
for DNSO and DNSO0.1, and slower separation rates than
1* for DNS10 and DNS-inf. The transition of KS shows
qualitatively the same features, although less pronounced.
This can be an effect of the absence of a nonlinear flow field
in KS. Moreover, as two-particle dispersion depends on the
history of trajectories, the fundamental difference of a non-
decaying flow field in KS and a freely decaying one in DNS
might also explain some differences. This suggests an
increased importance of the dynamics of the flow field
for two-particle compared to single-particle Lagrangian
statistics.

KS with parameters comparable to DNS generally show
a reduced plateau due to the absence of coherent structures
in KS fields. As dominantly stratified turbulence has strong
horizontal vorticity, two particles at approximately the
same height, but horizontally apart, will be in two different
horizontal vortex structures. So their vertical two-particle

dispersion oscillates around a plateau, the size of which is
connected to the size of the structures. A recent topological
argument for this in Davila and Vassilicos (2003) relates
stagnation points to particle separation. The size of the
structures indeed seems to play an important role in the
plateau of DNS, as preliminary results of further simula-
tions show, when trajectories for two-particle dispersion
are started at significantly later times. Due to the decay
of turbulence, the velocity field at this time has both less
energy and a larger turbulent turnover time, producing a
more stable flow field, which vertically de-correlates the
two particles less fast.

Contrary to Nicolleau and Vassilicos (2000), a second
plateau is not observed in dominantly stratified KS. This
is not necessarily contradictory, as they used Froude num-
bers of 0.0034, while in this work Froude numbers are of
the order of 0.05. Our KS and DNS at lower Froude num-
bers exhibit this second plateau (not shown). The length of
the plateau is indeed not only dependent on the size of
coherent structures, but also on the Froude number (Nicol-
leau and Vassilicos, 2000).

The structure formation might also explain the compar-
atively slow long-time separation of the cases DNSO and
DNSO0.1 compared to the case DNS1. The coherent struc-
tures are strongly formed for dominant stratification while
nearly nonexistent for DNS1. As no coherent structures
can be formed in KS, the dominantly stratified cases will
undergo the same linear processes as case KS1 and so
evolve similarly. However, this also means that a plateau
observed in DNS potentially created by a distribution of
structures, and a plateau observed in KS because of a
strong confinement in the vertical are qualitatively differ-
ent, the latter only being linearly driven buoyancy
oscillations.

The final period of evolution of two-particle dispersion
shows the most distinct differences between KS and
DNS, showing the increasing importance of nonlinear
dynamics with time. KS exhibits a very fast growing sepa-
ration with a rate of > and more for all parameters. The
cases KSO and KSO0.1 actually show a relative vertical sep-
aration which is larger than the one from cases KS10 and
KSinf. In DNS we observe separation rates between ¢
and > for cases DNSO, DNS0.1 and DNS10 and slightly
higher for cases DNS1 and DNS-inf. Neither a Brownian
regime nor absolute values close to single-particle separa-
tion are observed for any of the cases at longest times.
Furthermore, no second plateau is observed for the two-
particle dispersion in the dominantly stratified cases. This
might be due to too short integration times.

3.2. Horizontal two-particle dispersion

Horizontal two-particle dispersion is shown in Fig. 5(a)
for KS and Fig. 5(b) for DNS. A basic qualitative similar-
ity can be detected, which shows an initial ballistic behav-
iour and certain qualitative changes in the rate of
separation at longer times.
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Fig. 5. (a) KS and (b) DNS of horizontal two-particle dispersion for
different o = 2Q/N.

The KS runs show an excellent agreement in the scaling
of the ballistic regime. A transition occurs at around
tu,/L}, = 0.1, where the dominantly stratified cases KSO
and KS0.1 follow an evolution close to isotropic two-parti-
cle dispersion. This means that a quasi-inertial range is
observed with a separation rate close to 7 at times
1 < tu,/L;, < 10 followed by an evolution which tangen-
tially approaches a Brownian ¢-law.

The cases KS1, KS10 and KSinf show a different long-
time evolution. They exhibit a ¢-law for times 0.1 <
tu,/L}, < 10, which cannot be of Brownian origin, as the
trajectories are not de-correlated yet. The physical principle
of the slowed down rate of separation is yet unknown, but
possibly connected to similar observations concerning
single-particle dispersion. A transition to a r°-law or faster
dispersion is seen at later times. The purely rotating case
undergoes this transition at around fu;/L}, = 20. The cases
KS1 and KS10 exhibit a shorter range for the z-law, then
evolving parallel to the dominantly stratified cases,
although at a lower absolute value.

In Fig. 5 for DNS we see the initial ballistic regime for
all parameters. Compared to KS, the ballistic regime
changes to a transition region at significantly later times.
In the transition region, the cases DNS10 and DNS-inf fol-
low a linear 7-law evolution for a short time. At fu;,/L}, ~ 2

all runs exhibit a 7°-law, much later than in the isotropic
run. A slightly slower separation is observed for cases with
rotation due to the earlier linear evolution. Furthermore,
contrary to the evolution of cases KS10 and KSinf,
DNSI10 and DNS-inf evolve very similarly. No Brownian
regime is observed for long times, possibly due to too short
integration times.

3.3. KS of two-particle dispersion

From the foregoing discussion we deduce an important
impact of nonlinear mechanisms on two-particle disper-
sion, notably larger than for single-particle dispersion.
The KS presented here seem to not model the nonlinear
mechanisms with the needed precision to predict two-parti-
cle dispersion in rotating and stratified turbulence. So do
we need to abandon the idea of using KS-like models based
on linear dynamics to predict two-particle dispersion statis-
tics? Not necessarily, as the KS presented here can be mod-
ified to maybe capture nonlinear phenomena. Effects of
nonlinearity can be generated in two ways. The first way
is by introducing a stochastic or semi-stochastic time-
dependency of the initial wave vectors, which could simu-
late the slow nonlinear evolution of the flow field in Fourier
space (Nicolleau and Vassilicos, 2000; Fung et al., 1992).
The second way is to modify the initialization. The initial
energy spectrum is the most important ingredient in simu-
lating the nonlinear phenomena in the KS. As to our
knowledge the anisotropic spectral structure of the energy
density of rotating and stratified turbulence is not yet
known, the initial spectrum of the KS is in its best case
an approximation. Furthermore, the details of initializing
a 3D-flow field by choosing random Fourier modes can
influence the final velocity field significantly. We therefore
believe that the two-particle dispersion of the KS can be
significantly improved by more detailed information of
Eulerian statistics, in particular of the spectral energy den-
sity distribution, of rotating and stratified turbulence.

4. Conclusions

4.1. Lagrangian statistics of rotating and stratified
turbulence

Particle trajectories in purely stratified turbulence are
confined to a vertical level for very long times as shown
by stochastic models (Csanady, 1964), DNS (Kimura and
Herring, 1996), KS (Nicolleau and Vassilicos, 2000), linear
models (Kaneda and Ishida, 2000) or experiments (Britter
et al., 1983), even for weakly stratified turbulence. The tra-
jectories are oscillating and bounded by the potential
energy. Vertical single-particle dispersion in purely strati-
fied turbulence therefore exhibits damped oscillations
forming a plateau, after an initial ballistic regime. The
plateau is easily related to the finite potential energy reser-
voir in the system. However, the various studies with the
different techniques do not agree with each other on the
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evolution of the damped oscillations and do not estimate
the long-time evolution of vertical single-particle disper-
sion. The horizontal single-particle dispersion is often
assumed to be similar to isotropic dispersion. However,
we find quantitative differences for some of the horizontal
statistics.

In rotating turbulence no potential energy is available
and the particle dispersion is qualitatively similar to isotro-
pic turbulence. Slight qualitative differences, namely a fac-
tor two between horizontal and vertical dispersion, are
found with a linear model (Cambon et al., 2004).

4.2. The role of nonlinearity in Lagrangian statistics

There is a paradox. In a stratified fluid the layering or
pancake dynamics, observed when looking at velocity
snapshots (Liechtenstein et al., 2005) or single-time Eule-
rian statistics, is a nonlinear phenomenon, at least for
homogeneous turbulence. How can linear theory predict
anisotropy of turbulent trajectories in two-time statistics?
This applies also to rotating turbulence.

Due to the lack of anisotropy in a linearly generated
flow field (Liechtenstein et al., 2005), Lagrangian statistics
include anisotropy of the flow field exclusively through the
trajectory equation, whose nonlinearity might be a substi-
tute for the nonlinear advection term in the Navier—Stokes
equation. Over the Taylor hypothesis, this also applies for
two-time statistics of RDT/SCH. If this is true, then
Lagrangian statistics altered by instantaneous structures,
such as two-particle statistics should be influenced signifi-
cantly by the absence of a nonlinear term in the dynamical
evolution of the flow field. This is partly confirmed by a dif-
ferent scaling in two-particle dispersion, without final con-
clusive answers provided by KS or DNS. To be able to
follow up on this problem, a two-particle two-time RDT
velocity correlation model is needed.

Although universal scaling laws have been found for dif-
ferent Lagrangian statistics, linear and nonlinear models
scale differently because of the different degrees of anisot-

ropy in their respective Eulerian statistics. This is a definite
influence of nonlinear dynamics of the Eulerian field on
Lagrangian statistics, not included in either KS or RDT/
SCH. DNS results show a nonlinear development of the
velocity fields with distinct anisotropies and structures
formed, which depend on «. The connection between
coherent structures in instantaneous Eulerian fields and
trajectories is, therefore, evidently not possible without
nonlinearities in the flow field. This questions previous
empirical attempts to connect Eulerian and Lagrangian
length scales, and suggests to revisit the existing scalings,
with a particular emphasis on the directional Eulerian
statistics.

To achieve this goal, a Lagrangian parametric study
using DNS of rotating and stratified turbulence is needed.
Due to the long simulation times needed to generate qual-
ity Lagrangian data, this involves a continuous coopera-
tion with supercomputing centers, and we therefore want
to thank equally IDRIS (computing center of French
CNRS) and CCRT (computing center of French CEA).
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